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Bayesian Binary Segmentation Procedure for a 
Poisson Process With Multiple Changepoints 

Tae YOUNG YANG and Lynn Kuo 

We observe n events occurring in (0, T] taken from a Poisson process. The intensity 
function of the process is assumed to be a step function with multiple changepoints. This 
article proposes a Bayesian binary segmentation procedure for locating the changepoints 
and the associated heights of the intensity function. We conduct a sequence of nested 
hypothesis tests using the Bayes factor or the BIC approximation to the Bayes factor. At 
each comparison in the binary segmentation steps, we need only to compare a single- 
changepoint model to a no-changepoint model. Therefore, this method circumvents the 
computational complexity we would normally face in problems with an unknown (large) 
number of dimensions. A simulation study and an analysis on a real dataset are given to 
illustrate our methods. 

Key Words: Bayes factor; Hypothesis testing; Schwarz information criterion. 

1. INTRODUCTION 

We observe n event times taken from a Poisson process. We assume the intensity 
function (failure rate) of the Poisson process is a piecewise' constant function with an 
unknown rate Ak between unknown changepoints (ck 1, Ck]. Moreover, the number of 

changepoints K is also unknown. That is, we assume the failure rate of the Poisson process 

to be 

K+1 

A(t) = E I{Ck-I<t<Ck}Ak, (1.1) 
k=1 

where I{E} is the indicator function of the event E, and 0 = co < cl < ... < CK < 

CK+1 = T is an increasing sequence of unknown changepoints, and A1,... , AK+I are 

unknown positive constants. The purpose of this article is to develop a Bayesian binary 
segmentation procedure for locating the multiple changepoints cl, C2,... and for estimating 
the corresponding failure rates A1, A2,... in (1.1). 
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The observed n event times taken from this Poisson process are denoted by D(O,T] = 

(xI, .. ., xn) with 0 < xl < ... <_ Xn < T. A simple nonparametric estimator of A(t) 
when all the observed event times are distinct is 

n+1 

Z(t) = EI{Xk_I<t<Xk I (1.2) 
k=1 Xk -Xk1I 

where xo = 0 and xn+1 = T. Given the data, the most changepoints we can detect is n. 
Therefore, we assume that K in (1.1) is at most n. There are essentially at most 2n + 1 
parameters (n changepoints and n + 1 constant failure rates) to be estimated for the most 
saturated model. The interesting question to ask is whether there exist nested submodels 
of (1.1) with fewer changepoints that can fit the data reasonably well. The Bayes factor or 
the Bayesian information criterion (BIC) approximation to the Bayes factor are commonly 
used for model selection. Their computation gets more and more complex as K increases, 
and is essentially infeasible for a large model with many changepoints. To circumvent the 
computational difficulties, we explore a binary segmentation method. We convert the model 
selection problem into several nested hypothesis testing problems; in each step we need only 
to compare a constant failure rate model with no changepoints to a model with exactly one 
changepoint. The computation is made easy. Our simulation runs suggest that our binary 
segmentation method yields satisfactory results. 

Vostrikova (1981) proposed a binary segmentation procedure and proved its consis- 
tency for locating the number of changepoints in a multidimensional random process. Chen 
and Gupta (1997) proposed a binary procedure with the BIC to locate multiple variance 
changepoints in a sequence of independent Gaussian random variables with known common 
mean. Our procedure is similar to that of Vostrikova. The procedure can be described briefly 
as follows: at the first level, we compare the models, respectively, with no changepoints 
and a single changepoint in (0, T] by using the Bayes factor. We assume the single change- 
point r is a continuous random variable with range in (0, T]. If the test is in favor of the 
no-changepoint model, we estimate the failure rate based on D(O,T], and stop the procedure. 
If not, then we locate the changepoint denoted by 'F by using numerical integrations or a 
sampling based approach. Then we divide the data into two parts: one denoted by D(O<T] 
contains all the event times between 0 and 'F inclusive; and the other denoted by D(T,T] 
contains all the event times between 'F and T inclusive. Then we run two Bayes factor tests 
similar to what we have done before; one is based on D(O,T] and the other is based on D(T,T] . 
If at anytime a test suggests that there are no changepoints in that subsegment, we immedi- 
ately estimate the constant failure rate in the subsegment based on its data. If a test suggests 
a changepoint, we locate the changepoint and continue splitting the data according to the 
changepoint and continue testing for each of the new parts. We continue testing until no 
more changepoints are found in all of the further subdivisions. Using this procedure we need 
only compare the no-changepoint model to the single-changepoint model. Moreover, when 
we determine there is no single changepoint in a subsegment, we do not need to continue 
testing for the data in that subsegment. This cuts the sample size down quite significantly 
for locating changepoints in the remaining region. The procedure is efficient and quite easy 
to implement. 

Study of changepoint problems is an active research area. The book edited by Carlstein, 
Muller, and Siegmund (1994) contains a wide range of articles on changepoint problems 
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mostly from frequentist perspectives with applications in quality control, survival analysis, 
time series, and image analysis. If we restrict our attention to Bayesian statistical analysis for 
a single changepoint in the Poisson process, we can find Raftery and Akman (1986); Carlin, 
Gelfand, and Smith (1992); and Raftery (1994). There is a dearth of work in the area of 
multiple changepoints problems, perhaps due to their complexity. Recently, Green (1995) 
proposed a reversible jump Markov chain Monte Carlo (MCMC) method for estimating 
the multiple changepoints and multiple failure rates for a Poisson process. Chib (1998) 
reformulated the changepoint models in terms of hidden Markov models and proposes 
an MCMC algorithm for computation. Both the reversible jump MCMC algorithm by 
Green and the MCMC algorithm by Chib are advanced techniques that are challenging 
to understand and implement. Instead, we explore the binary segmentation technique that 
can be implemented easily. 

Other works on problems related to changepoints in the hazard rate studied from the 
Bayesian perspective include Achcar and Bolfarine (1989); Arjas and Gasbarra (1994); 
Ghosh, Joshi, and Mukhopadhyay (1998); and Ebrahimi, Gelfand, Ghosh, and Ghosh 
(1997). All of them treated single changepoint problems, except Arjas and Gasbarra, who 
studied multiple changepoint problems. 

The outline of this article is as follows: Section 2 studies the hypothesis testing problem 
of no changepoints versus a single changepoint. Section 3 discusses the binary segmentation 
method. Sections 4 and 5 give the simulation results and a numerical example based on the 
coal-mining disasters dataset of Maguire, Pearson, and Wynn (1952) and Jarrett (1979). 

2. MODEL DETERMINATION BETWEEN NO CHANGEPOINTS 
AND SINGLE CHANGEPOINT 

The likelihood function for the data D(O,T] with the model of A(.) given in (1.1) can 
be written as 

L(c1,....,CK,)A1,...I AK+1 ID(O,T]) = A)(xi)) exp - Al >(s) ds) 

see Cox and Lewis (1966), Basawa and Prakasa Rao (1980), and Crowder, Kimber, Smith, 
and Sweeting (1991). 

Let us consider the model MI, the single-changepoint model. The intensity function 
for the model can be written as 

A(t) ={A, if 0 < t < r; 

Therefore, the likelihood of the data can be written as 

pr(D|A1, A2,T) - A N(T) exp(-AlT)A nN() exp[-A2(T - )] (2.1) 

where N(r) denotes the number of events in (0, T], and the original data sequence D(o,T] 
is abbreviated by D. 

On the other hand, the likelihood function for the no-changepoint model Mo with the 
constant failure rate A0 is 

pr(DIAo) = ASn exp(-AoT). 
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We will develop two tests for comparing a single-changepoint model versus a no- 
changepoint model. The first test is based on calculating the Bayes factor Blo for the 
single-changepoint model M1 against the model with no changepoints Mo. The second test 
is based on the BIC approximation to the Bayes factor. In the following, we assume our 
data sequence D consists of distinct observations. That is, xi < X2 < < xn. 

2.1 BAYES FACTOR 

The model selection between the model M1 and the model Mo is determined by using 
the posterior odds ratio; that is, we select the model M1 if pr(Mi 1D)/pr(Mo D) > 1. Note 
that 

pr(Mi D)/pr(Mo D) = {pr(Mi)/pr(Mo)} x {pr(D|Mi)/pr(DJMo)} 
= prior odds ratio x Blo. 

Suppose that a priori, we assume the model Mo is equally likely to the model M1. Then 
we reject model Mo if Blo > 1, where Blo (the Bayes factor of the model M1 against the 
model Mo) is defined to be 

Blo = pr(DIMI)/pr(DIMo). (2.2) 

Given the model M1, we assume the prior distribution on Al, A2, and T are independent 
with Ai - GC(ai, bi) (with mean ai/bi) and T U(O, T). We choose the gamma distribution 
G for its flexibility to model our prior belief. Moreover, the computational convenience of 
using the gamma prior makes it more desirable. The assumption of a uniform distribution 
on r can be relaxed, because we will rely on numerical methods for evaluating a one- 
dimensional integral (or a sampling based approach to update r). So 

rT oc 0 

pr(DIMI) = j j j pr(D|AI, A2, r)7r(Al, A2, r)dAidA2dr 

f F(al + j-I)F(a2 + n- -j + I)bu1U2 dab, ~ J[xp_xj) F(a1)F(a2)(b1 + T)al+i-1(b2 + T- T)a2+n-j+lT 

(2.3) 

where xo = 0 andXn+l = T. If the prior on r is not U(O, T), we can easily change the 
above expression from I/Tdr to 7r(r)dr where (r(r) is the prior on r. 

Given the model Mo, we assume A0 - G(ao, bo). Then we compute 

pr(D IMo) j n exp(-AoT)7r(Ao)dAo 

F(ao + n)bao( 

F(ao)(bo + T)ao+n 

If Blo < 1, we accept model Mo, estimate A0 to be 

Ao = (ao + n)/(bo + T), (2.5) 
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and stop the procedure. Otherwise, we accept model M1 and estimate r by using 

I = E(TrD) A/B, (2.6) 

where 

n+A [ (al + -j )F(a2 + n-j + 1)7 dT - 
A 

'[x- x ) (bl + T)al+j-1 (b2 + T - T)a2+n-j+l 
& 

and 

n+l 
L1(a) +;- )F(a2 + n-j + 1) dir 

j= [x , z ) (bl + T)al+j-1 (b2 + T -,T)a2+n-j+l 

Note that the posterior distribution of r given D in this situation is a mixture distribution 

j =I Wi fj (i-), where 

= 
cj(bl + i)ai?j-1 (b2 + T - 

T)a2+n-j+l 

with 

J[ _l,X3xj) (b1 + )ali+j-1 (b2 + T -_r) a2+n-j+l d - 

and 

F(al + j- )F(a2 + n-j + I)cj 
n 

= 1i7+(al + k- )F(a2 + nm-k + I)ck 

Therefore, an alternative method for computing -F would be: Generate an index variable 
J with values in 1, ... , n + 1 where the probability of J =j is Wj . Then generate a variable 
ir from the density fj. Replicate this procedure for a large number of times and take the 
average of the r values. 

Instead of using the posterior mean of r to estimate the change point, we could use the 
posterior mode. In fact, the posterior mode should be a more significant estimator because 
the posterior distribution of r is discontinuous with jumps at the data points. 

Remark: The above prior formulation excludes the case A1 = A2 in the M1 model (i.e., 

pr(Al = A2) = 0). An alternative prior formulation that contains the model Mo as nested 
within the model M1 could be considered. Let the joint prior on (A1, A2) be, independent 
of the prior on T, 

wr(AI ,A2) = wroI{,,=A2}f(Al lao, bo) + (1 - 7o)f(Al Jai, bl)f(A2 Ka2, b2) 

with f denoting the gamma density and wro denoting the prior probability of A1 = A2, 

that is the no-changepoint model. The posterior distribution of the 7rO, A1, A2, and r can 
be derived. Furthermore, the posterior odds ratio [1 - E(ro D)]/E(ro D) can be used for 
model selection. 
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2.2 BIC APPROXIMATION 

Schwarz (1978) proposed the BIC approximation to the Bayes factor. He suggests 
selecting the model with the largest log L(6ID) - -p log n, where 0 is the maximum 
likelihood estimate (MLE) of the unknown parameter 9 in the likelihood function L and p 
is the dimension of the 0. 

For the model MI, observe the likelihood function in (2.1) is maximized by setting 
A1 = N(T)/r and A2 = [n-- N ()(T-r) for each r. Then we need to maximize the 
following profile likelihood of r (we have dropped the constant exp(-n) from the profile 
likelihood expression): 

L() (N(T))N(T) (n -N(T))nN-N(T) (2.7) 

This likelihood function takes the value 0 for r < xl and r > xn. Therefore, we need 
only examine the function for xl <_ < xn. Observe the likelihood function is a piecewise 
continuous function of r with discontinuities located at the data points xl, . . ., xn. When 
x; < r < xj+I, for each j = 1, . n. , - 1, the likelihood function restricted to this region 
can be written as 

L(,T) IIxj<T<xj+1 (i) (T- ) I{xj<T<Xj+lI} 

It is straightforward to show this function is a convex function of r. Therefore, this function 
is maximized at one of its boundaries xj or x-+i. We use the notation x- to denote the 
left-hand limit of x. To find the maximum of L(T) for xi < r < xn, we only need to 
compare the profile likelihood evaluated at xI,x7,x2,x ,... , x- and pick T to be the 
argument that maximizes these values. We only need to compare the following values at 
j = 1, . . . , n excluding L(xT) and L(Xn): 

L (-) 
j )I 

n 
( 

j+ Inj 

and 

L (xj) i ( n j 
n- 

Now let us consider the null hypothesis with no changepoints. The likelihood function 
is given by 

L(Ao) = A n exp(-AoT). 

It is maximized by AO = n/T with a maximum value of (n/T)n exp(-n). 
So 

log Blo1 log pr(D 10, MI) - log pr(D Io,MO) -I (Pi -po) log n, 
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where 0i {A1, A2, 1}, A0, P1 = 3, and pO = 1. The right-hand side, denoted by 
log Bloc) can be simplified to 

log BJCo 

'i log( + (n-i) log( W_.) - log( - log n, 
J if xi is the maximum; 

1(i-1) log( + (n-i + 1) log(ni+ I-n log( -log n, 
if x7 is the maximum. 

If the above expression is positive, then we would reject the no-changepoint hypothesis and 
estimate the changepoint at the argument that achieves the maximum. 

3. THE BINARY SEGMENTATION PROCEDURE 

3.1 THE PROCEDURE 

The overall procedure using the Bayes factor criterion for inference for the intensity 
function is given as follows: 

1. Level I analysis-We follow the procedure in Section 2.1 using the whole data and 
region (0, T] to test the model of no changepoints (Mo) versus single-changepoint (MI). 
If we decide there are no changepoints, then we estimate the constant failure rate to be 
AO = (ao + n)/(bo + T) as in (2.5) and stop. If not, we continue to the level 2 analysis. 

2. Level 2 analysis-We estimate the changepoint T using (2.6) and divide the data 
into two parts, D21 and D22, where D21 consists of all event times observed in (0, T] with 
sample size n21; and D22 consists of all event times observed in (T, T] with sample size 
n22. Then we apply two tests similar to the one in Section 2.1; one is based on D21 and 
the other is based on D22. For the first test, we need to replace D with D21, change T to T 
and n to n21. For the second test, we need to relabel the data D22 to xl, ... ., xn22. Then we 
apply the test with the region (0, T] changed to (T, T], 1/TdT changed to 1/(T - T-)dT, and 
n changed to n22. If both of these tests select the null models, then we stop the procedure 
and estimate the constant failure rate A21 = (ao + n21 )/(bo + T) for the segment (0, T] and 
A22 = (ao + n22)/(bo + T - T) for the segment (T, T]. That is, we estimate the intensity 
function to be A(t) = A21 I{o<t<-} + A22I{-<t<T} . If any of the tests suggests that there is 
a changepoint, then we would proceed to the next level. 

3. Continue testing-We would estimate the changepoint as in (2.6) with appropriate 
changes. Then we would continue testing until no more splitting is allowed. Any time a 
null model of no changepoints is determined, we would estimate the constant failure rate at 
that region to be A = (ao + current sample size)/ [bo + length(current segment)] and cease 
further testing in the subregion. 
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For the BIC, we follow the above procedure with the criteria given in Section 2.2. 
Every time that model Mo is selected, we estimate the corresponding failure rate to be 
A=(the current sample size)/(length of the current segment). 

3.2 HEURISTIC ARGUMENT 

Let us suppose the intensity function has changepoints at cl, C2, and C3 with the constant 
failure rates A1, A2, A3, and A4 where any of the adjacent A's are not equal. Let us call this 
the saturated (S) model. Then our level 1 test is essentially testing Ho: A1 A2 = A3 = A4 
versus Ha: A1 = A2 = A3 4 A4 or A1 = A2 4 A3 = A4 or A1 4 A2 = A3 = A4. Our level 1 
test would most likely reject the Ho hypothesis, because the BFSo would tend to be larger 
than the BFSI and BFIo = BFSO/BFSi. We use BFSo to denote the Bayes factor for testing 
the saturated model S against the model in Ho, and BFSI to denote the Bayes factor for 
testing the saturated model S against the model in Ha. When the single-changepoint model 
is detected, we would most likely be able to locate one of the changepoints well with a large 
sample. If cl is detected, then our binary segmentation test should suggest no more splits 
to the left, and either c2 or C3 is detected to the right. Then a third level test will determine 
the remaining changepoint. If c2 is detected, then both level 2 tests should be able to pick 
up the changepoints cl and C3. Similar results will follow when C3 is detected first, where a 
level 3 test will be needed. 

4. SIMULATION 

We generate event times from a Poisson process with the rate function 

A(s) = 3I{o<s<2o} + 0.5I{20<s<90} + 5I{9o<s<?10}. (4.1) 

There are two changepoints cl = 20 and c2 = 90, and three corresponding rates, A1 = 
3, A2 = 0.5, and A3 = 5. We randomly sample 145 event times in (0,1001 from the 
Poisson process with rate function in (4.1). This is done by using the corresponding mixture 
distribution. We first generate an index variable I with pr(I = 1) = 60/145, pr(I = 2) = 
35/145, and pr(I = 3) = 50/145. Then we replicate this process 145 times and count the 
numbers of observations with values of 1, 2, or 3. The numbers are denoted by nm, n2, and 
n3. Then we generate n1 event times from a Poisson process with rate 3 using the IMSL 
RNNPP routine. Similarly, we generate n2 observations from a Poisson process with rate 
0.5 and translate the event times up by 20 units, and n3 event times with rate 5 and moved 
up by 90 units. The simulated data are plotted in Figure 1 where the event label i is plotted 
against the event time xi for i = 1, . . .,145. 

We fit the data with Bayes factor Blo for the single-changepoint model against the 
no-changepoint model. Calculation of the Bayes factor is based on numerical evaluation 
of a one-dimensional integral. At each stage, we consider a relatively diffuse Gamma prior 
1(0.5,0.0000001) for Ai, the heights of the intensity function, so that the analysis is more 
focused on the likelihood. For the complete data in (0,100], the Blo is 3.2 x 107. The 
single-changepoint model is selected and the estimated changepoint is at 88.9. We then 
divide the data into two parts: data in the first segment (0, 88.9] and data in the second 
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Figure 1. Graph for the simulated data. 

segment (88.9,100]. For the data in (0, 88.9], the Bayes factor Blo is 2.6 x 109 and the 
estimated changepoint is at 20.0. We divide the data further. For the data in (0,20], the 
Bayes factor Blo is 0.11 and the estimated constant intensity function is at A1 = 3.02. 
For the data in (20, 88.9], the Bayes factor Blo is 0.58 and the estimated constant intensity 
function is at A2 = 0.5. For the data in the segment of (88.9,100], the Bayes factor is 0.09 
and the estimated constant intensity function is at A3 = 4.66. 

Next, we fit the data using BIC. The procedure of splitting the data is quite similar to 
that using the Bayes factor criterion. We obtain the estimated intensity function with heights 
of Al = 3.05 in (0,19.6], A2 = 0.51 in (19.6,89.2], and A3 = 4.79 in (89.2,100]. 

The true intensity function and the estimated intensity functions using the Bayes factor 
and the BIC approximation are plotted in Figure 2. They are marked in order by the line with 
plus signs, the dotted line, and the line with asterisks. The figure shows that both methods 
yield similar results and both capture the true intensity function. 

5. NUMERICAL EXAMPLE 
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Figure 2. Comparison among the true intensity function (plus line), the estimated intensity functions from the 
Bayes factor criterion (dotted line), and the BIC (asterisked line)for the simulated data. 

A dataset of time intervals between British coal-mining disasters was initially gathered 
by Maguire et al. (1952). Then it was corrected and extended for 112 years from March 
15, 1851, to March 22, 1962, by Jarrett (1979). There were 191 accidents in this period of 
40,550 days and the accident time was recorded in days. There was a 0 value in this dataset 
corresponding to a second accident in the same day. We group these two accidents into one 
and use the data of 190 accidents. The data are plotted in Figure 3 where the number of 
the accident i is plotted against the time of the accident xi for i = 1, . ..,190. We can also 
apply our methods to the original data of 191 accidents by moving the time of the second 
accident in the same day up by a half day. Similar results are obtained and are omitted here. 

The Jarrett data have been used by other authors, including Raftery and Akman (1986), 
Carlin et al. (1992), and Green (1995). Raftery and Akman (1986) extended the dataset 
to the period between January 1, 1851, and December 31, 1962. They assumed a single 
changepoint and use the uniform prior over the extended range for the changepoint. They 
estimated the posterior mode of the location of the single changepoint to be at 14,313 days 
between the 124th accident and the 125th accident. Carlin et al. (1992) also assumed a 
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Figure 3. Graph for the data of 190 coal mining disasters. 

single changepoint. They grouped the data by discretizing them into counts per year, and 
applied the Poisson process to the modified data. The changepoint was taken as a discrete 
variable in units of years. They estimated the posterior modal year for a single changepoint 
to be the year of 1891 (around the 127th accident) by a hierarchical Bayesian approach. 
Green (1995) developed a reversible jump MCMC method for changepoints and intensity 
functions. According to Green's Figure 2, the posterior probabilities of one change, two 
changes, three changes, and four changes are about 0.16, 0.35, 0.26, and 0.15, respectively. 
Therefore, the model with two changepoints has the highest posterior probability. In the 
two changepoints scenario in Green's Figure 3, the posterior mode for the first (second) 
changepoint is about 14,000 (35,000) days. In the one changepoint scenario, the posterior 
mode for the single changepoint is about 14,000 days. 

We fit the data with the Bayes factor criterion. For each stage, we consider a relatively 
diffuse Gamma prior 17(0.5,0.0000001) for the heights of the intensity function. This mim- 
ics the diffuse (improper) prior F(0.5, e) withc -e 0 used by Raftery and Akman (1986). 
For the complete data in (0,40,550], Blo is 2.1 x 109, and the estimated changepoint is at 
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Figure 4. Comparison between the estimated intensity functions from the Bayes factor criterion (dotted line) and 
the BIC (asterisked line). 

14,435. We divide the original data into two segments (0,14,435] and (14,435,40,550]. 
For the data in (0,14, 435], the Bayes factor BI0 is 0.04. We estimate the constant intensity 
function to be at Al = 0.0086. For the data in (14,435,40,550], the Bayes factor Blo is 
0.16 and so we estimate the corresponding constant intensity function to be at A2 = 0.0025. 

We fit the data with the BIC approximation for the single-changepoint model against 
the no-changepoint model. For the complete data in (0,40, 550], log BloC is 30.99, and the 
estimated changepoint is at X124 = 14,241. We further divide the complete data into two 
segments. For the data in (0,14, 241], log BBIC is -3.41 and the estimated constant intensity 
function is at 0.0087. For the data in (14,241,40,550], log BloC is 2.44, and the estimated 
changepoint is at x186 = 35,242. So we continue dividing the data in the second segment 
into two parts: (14,241,35,242] and (35, 242,40,550]. For the data in (14,241, 35,242], 
log BBIC is -0.62, and the estimated height of the constant intensity function is 0.0029. For 
the data in (35,242,40,5501, log BloIC is -0.86 and the estimated height of the constant 
intensity function is 0.00085. 

We summarize the two procedures. According to the Bayes factor criterion, there is only 
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one changepoint at 14,435 days with the intensity function of heights of A1 = 0.0086 and 
A2 = 0.0025. The single changepoint at 14,435 (between the 124th and 125th accidents) is 
similar to that in Raftery and Akman (1986) and Carlin et al. (1992). According to the BIC 
approximation criterion, there are two changepoints located at 14,241 (the 124th accident) 
and 35,242 (the 186th accident) with the corresponding heights of the intensity functions 
of 0.0087, 0.0029, and 0.00085, respectively, from left to right. Our result from the BIC 
approximation criterion is quite similar to that of the Green's two changepoints scenario. 
Figure 4 plots the two estimated intensity functions, the dotted line denoting the one using 
the Bayes factor and the line with the asterisks denoting the one using the BIC. 
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